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ABSTRACT
Federated learning enables many local devices to train a deep learning model jointly without sharing the local data.
Currently, most of federated training schemes learns a global model by averaging the parameters of local models.
However, most of these training schemes suffer from high communication cost resulted from transmitting full local
model parameters. Moreover, directly averaging model parameters leads to a significant performance degradation,
due to the class-imbalanced non-iid data on different devices. Especially for the real life federated learning tasks
involving extreme classification, (1) communication becomes the main bottleneck since the model size increases
proportionally to the number of output classes; (2) extreme classification (such as user recommendation) normally
have extremely imbalanced classes and heterogeneous data on different devices. To overcome this problem, we
propose federated multiple label hashing (FedMLH), which leverages label hashing to simultaneously reduce the
model size (up to 3.40× decrease) with communication cost (up to 18.75× decrease) and achieves significant
better accuracy (up to 35.5% relative accuracy improvement) and faster convergence rate (up to 5.5× increase)
for free on the federated extreme classification tasks compared to federated average algorithm.

1 INTRODUCTION

As a lot of modern edge devices, like smart phones and IoT
devices, keep generating massive data, learning a model
locally on a large number of devices has become more and
more important for machine learning. With growing com-
putation power of the edge devices and higher requirement
of data privacy, federated learning (FL) has become one
of the important domains in large scale machine learning.
Different from the traditional centralized learning, federated
learning does not store the data and train machine learning
models on a central server. Instead, the data are saved on
the local clients without sharing with others, and most of
the computations are completed locally. In detail, FL lets
the local clients learn a local model using its user generated
data. To train a global model that can be generalized to
different users, FL uses a central server to collect the local
model parameters and aggregate them into a global model
periodically.

FL has achieved a great success in many different types of
machine learning tasks. In this project, we focused on FL
on extreme classification tasks (federated extreme classifi-
cation). Extreme classification task requires to predict the
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labels of a large number of different classes (Choromanska
& Langford, 2014; Prabhu et al., 2018; Hsu et al., 2009; Me-
dini et al., 2019). Due to the more and more strict privacy
regulations, federated extreme classification has found a
wide range of application scenarios. For example, many so-
cial media companies are interested in training NLP models
(most NLP models involve predicting word from extreme
large vocabulary) based on user generated content for sen-
timental analysis, inappropriate language detection or text
auto completion. However, due to the privacy regulations
like GDPR, it becomes difficult to share user data on social
media across boarders (like the investigations on Facebook
and WhatsApp user data policy (GDP, 2021)). Hence, FL is
a good solution to learn a good NLP model without sharing
users’ data from different countries (Lin et al., 2021). An-
other example is training product/advertisement recommen-
dation systems on e-commerce platforms based on users’
data. The recommendation systems also involve hundreds
thousands of different items as output labels. Due to the
similar dilemma faced by the social media platforms, we
may also need to train a recommendation system using FL
algorithms (Yang et al., 2020).

Different from the traditional FL tasks, federated extreme
classification faces some unique challenges. First, feder-
ated extreme classification usually has highly imbalanced
class distribution (figure 2a). Most of the classes only have
a few positive instances despite of the large sample size.
Second, due to large number of output classes, extreme
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classification models has memory blow up in the last fully
connected layer. Hence, the communication cost of each
synchronization round is huge. Moreover, FL usually re-
quires more training epochs before converges, which adds
extra burden to the model communications. Third, for the
non-iid partitioned local datasets, in federated extreme clas-
sification tasks, the class distributions are divergent between
different local datasets. A local dataset may have a lot of
positive instances in class j while another local dataset may
only contain negative instances of class j. Especially when
the FL task has a large number of classes (like federated
extreme classification tasks), this divergence is even more
obvious compared to the FL tasks with a small number of
classes (see theorem 2). Previous research suggests that the
class distribution divergence significantly hurt the general-
ization performance of the global model (Zhao et al., 2018;
Karimireddy et al., 2020).

However, these challenges have not been well addressed
by the current FL algorithms. For example, as the most
popular FL algorithm, federated average algorithm (Fe-
dAvg) (McMahan et al., 2017) learns a global model by
periodically transmitting and averaging the parameters of
local models trained on the local data. However, FedAvg
does not overcome the above challenges: (1) large data
heterogeneity significantly degrades the performance of Fe-
dAvg and slows down the convergence (Sahu et al., 2018;
Karimireddy et al., 2020); (2) Though models are only peri-
odically synchronized, transmitting all local full models still
results in high communication cost. Thus, naively applying
FedAvg on extreme classification will have large perfor-
mance degradation, slow convergence and extremely high
communication cost.

Our Contributions: In this paper, we propose a novel
method, Federated Multiple Label Hashing (FedMLH), for
federated extreme classification tasks. Compared to FedAvg
algorithm, FedMLH significantly reduces the communica-
tion cost, improves the model accuracy and speeds up the
training. Moreover, FedMLH compresses the model size,
adjusts the imbalanced class size and also reduces the class
distribution divergence between different local clients. We
evaluate FedMLH on four different extreme classification
datasets, and FedMLH consistently demonstrates much bet-
ter performance. FedMLH reduces the communication cost
by up to 18.75×, improves the absolute prediction accu-
racy by up to 9% and relative accuracy improvement by up
to 35.5%, speeds up the convergence rate by up to 5.5×,
which is a remarkable improvement.

We also provide theoretical analysis to show that FedMLH
relieves problem of imbalanced class size and divergent
class distribution between clients.

2 PROBLEM STATEMENT

First, we define the setup of federated learning in our paper.
Let (x,y) be the input features and labels pair, where feature
vector x ∈ Rd and label y = {0, 1}p. Assume we have K
local devices, and each device k generates its own dataset
Dk for k = 1, 2, . . . ,K. Let nk be sample size of Dk,
nk = |Dk|, and N is the total number of samples on all the
local devices. A local model wk on device k is trained using
dataset Dk and the corresponding empirical loss function is
defined L(wk|Dk) = 1

nk

∑
xi,yi∈Dk

`(xi,yi|wk), where
`(xi,yi|wk) is the loss function for sample (xi,yi) under
parameter wk. A global model w is learned from the local
models wk. The performance of the federated learning
model is measured using the global model w on the testing
set.

Non-iid local data distribution In many FL tasks, the
local datasets,Dk (data on k-th client), are not following the
same distribution, i.e., for (x,y) ∈ Dk, (x,y) ∼ Fk but Fk
varies across different local clients. Especially for extreme
classification tasks, since the number of classes is huge, the
local data distribution Fk is even more divergent. Hence,
it is more practical to assume the Fk are non-iid. In the
experiment section, we design a data partition mechanism
to ensure Dk following totally different distributions.

3 BACKGROUND

We start by introducing the FedAvg algorithm and how to
use Count Sketch to compress the data.

3.1 FedAvg algorithm

FedAvg algorithm learns a global model by directly av-
eraging the local parameters at synchronization. Assume
each global iteration involves M epochs. At the beginning
of a global iteration t, the central server randomly picks
a subset St of K

′
local devices and broadcast the global

weight w(t) to the selected local devices. Then, on the se-
lected local device k, it updates the model parameters from
w(t) to wk

(t) using the local loss function, fk. At synchro-
nization, the global model is updated by averaging wk

(t+1),
w(t+1) =

∑
k∈St

nk

N wk
(t+1). The FedAvg algorithm runs

for T global iterations to learn a global model.

3.2 Count sketch

Count sketch is a probabilistic data structure widely used
to recover the heavy hitters. A count sketch consists of K
hash tables and each hash table has R buckets. A vector
x = (x1,x2, . . . ,xp) ∈ Rp is mapped into the hash tables
using K independent hash functions. Let M ∈ RK×R
be the matrix storing the values in the count sketches,
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and let h1, h2, . . . , hK be independent uniform hash func-
tions hj : {1, 2, . . . , p} → {1, 2, . . . , R}. In addition,
count sketch uses sign hash functions sj : {1, 2, . . . , p} →
{+1,−1} to map the components of the vectors randomly to
{+1,−1} (Algorithm 1, line 3 to 5). To retrieve the estimate
of Xi, again, count sketch computes the hashing locations,
(h1(i), h2(i), . . . , hK(i)) and retrieves the values stored in
the corresponding buckets. Then, take the median of the re-
trieved values as the estimate, µ̂i = medianjMj,hj(i) ·sj(i).
We may also take the mean of Mj,hj(i) · sj(i) instead of
taking median since by the law of large numbers, mean also
gives a good central estimate.

Algorithm 1 Count Sketch Algorithm

1: Input: x ∈ Rp, K independent uniform hash functions
h1, h2, . . . , hK , and sign functions s1, s2, . . . , sK

2: Initialize entries of hash table array M ∈ RK×R to
zero

3: for i = 1, 2, . . . , p do
4: Insertion: update Mj,hj(i)+ = xi · sj(i) for j =

1, 2, . . . ,K
5: end for
6: Retrieval: estimate of xi, µ̂i = medianjMj,hj(i) ·
sj(i)

4 OUR PROPOSAL: FEDERATED
MULTIPLE LABEL HASHING (FEDMLH)

In the introduction section, we have discussed the chal-
lenges of federated extreme classification. To address these
challenges, we propose FedMLH, which reduces the com-
munication cost and adjust the non-iid class distributions.

Compress the last layer Due to the large number of out-
put classes, the last fully connected layer of extreme classi-
fication models have a huge amount of parameters, which
becomes the main communication bottleneck of the fed-
erated extreme classification. FedMLH leverages the idea
of count sketch and hashes every class into R independent
hash tables (figure 1a). For sample n and hash table j, its
corresponding label of i-th bucket, zj,kn,i , is equal to the union
of the class labels that are hashed into the same bucket (line
4-7, algorithm 2). Then zj,k ∈ Rnk×B contains the j-th
hash table’s bucket labels of all samples on client k. To
compress the size of the last fully connect layer, we set
the number of buckets (B) in each hash table to be much
smaller than the number of classes.

During the training, we use the bucket labels as the train-
ing target. Similar to the idea of count sketch, during the
inference, to estimate the log-probability of a class j, we
just go back to R buckets that class j is hashed into, and
take the mean of the buckets’ log-likelihoods as the log-
likelihood of class j (figure 1b). Since the R hash tables

are independent to each other, for each hash table, we train
an independent model (denoted as “sub-model”) to learn
the corresponding bucket labels. Thus, FedMLH trains R
sub-models simultaneously.

Training and model synchronization First, the central
server generates hash table size B and R independent 2-
universal hash functions, h1, h2, . . . , hR, and then broadcast
to the local clients (line 3, algorithm 2). On the local clients,
the output classes are hashed into R hash tables using hi.
We also initialize R independent sub-models which use
the bucket labels as the training target. Let wj,k be the
parameter of the j-th sub-model on the k-th client.

Algorithm 2 FedMLH

1: Input: Number of selected clients S, hash function
number R, hash table size B, training data on k-th
client (xk,yk).

2: On central server: GenerateR uniform hash functions,
h1, h2, . . . , hR, on the server, where hj : {0, 1, . . . , p−
1} → {0, 1, . . . , B − 1}

3: Broadcast the R hash functions and hash table size B
to each local client

4: Label hashing on client k, k = 1, 2, . . . ,K
5: for i = 1, 2, . . . , B, j = 1, 2, . . . , R, n = 1, 2, . . . , nk

do
6: label of i-th bucket, zj,kn,i =

⋃p
l=1 y

k
n,l · I(hj(l) = i)

7: end for

8: Training (on server):
9: for Synchronization round t = 1, 2, . . . , T do

10: Randomly select a set Kt that includes S out of K
clients to collect

11: for selected device k ∈ Kt (in parallel) do
12: for hash function j = 1, 2, ..., R (in parallel) do
13: wj,k

(t+1)= DeviceTrain(j, k;wj
(t))

14: end for
15: end for
16: for hash function j = 1, 2, ..., R (in parallel) do
17: Aggregate parameter: wj

(t+1) =
∑
k∈Kt

1
Sw

j,k
(t+1)

18: end for
19: pass wj

(t+1), j = 1, 2, . . . , R, to all the local clients
20: end for

21: DeviceTrain(j, k;w):
22: Receive wj

(t) from server
23: for each local epoch i = 1, 2, , . . . , E do
24: Update the parameters (in parallel): wj,k

(t+1) =

Train(xk, zj,k;wj
(t)) for j = 1, 2, . . . , R

25: end for
26: Pass wj,k

(t+1) to the server
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During the t-th synchronization round, FedMLH randomly
picks a set of S clients (line 10, algorithm 2). On each
selected client, all the sub-models are trained in parallel for
E epochs (line 11-15, algorithm 2). Then, send the updated
local parameters to the central server. To update the global
parameters, for each sub-model, the central server average
the corresponding model parameters collect (line 16-18,
algorithm 2). Finally, the global parameters are shared to
all the local clients for the training of next synchronization
round.

Parallelizable between sub-models Since different sub-
models are fully independent, during the training, we do
not need to communicate any parameters between different
sub-models on the same clients. Actually, FedMLH learns a
federated model for each sub-model in parallel.

5 ANALYSIS OF FEDMLH
For the federated extreme classification tasks, there exists
two significant problems: 1) The class distribution is highly
imbalanced (due to the large number of classes); 2) The class
distribution diverges between different clients (In FedAvg,
class distribution means the number positive instances of
different classes and in FedMLH, it refers to the number of
positive instances in different buckets). We found FedMLH
is helpful to relieve both problems.

5.1 FedMLH adjusts the imbalanced class
distribution

When number of classes is huge, the number of positive in-
stances are not evenly distributed among classes. In the real
datasets, figure 2a suggests that only a proportion of classes
have a lot of positive samples (called “frequent classes”),
while the majority of the classes just have a few samples
(called “infrequent classes”). On the other hand, these in-
frequent classes cannot be ignored. For example, figure 2b
shows that for the “LFAmazonTitle” dataset, the classes with
normalized label frequency (normalized positive instance
frequency = # of positive instances/sample size) less than
10−4 (less than 130 positive instances) contributes about
70% of positive instances. Therefore, if the classification
model cannot predict the infrequent classes, it may miss
more than 70% of the positive instances, which is a huge
loss.

However, it is difficult to classify the infrequent classes in
general due to the lack of positive instances. Theorem 1
suggests that if the class lacks enough positive instances, it
is difficult to infer the distribution of positive samples on
the embedding space, and both the centroid and radius of
the positive sample cluster cannot well estimated.

Theorem 1 Assume we observe n i.i.d. samples of (x, y),

(xi, yi)
n
i=1, where xi ∈ Rd is the feature vector and

yi ∈ {0, 1} is the label of xi. Let n1, n0 be the number
of positive/negative samples of y (n0 + n1 = n). Assume
the model learns a embedding vector m(x) which follows
a mixed distribution of m(x) ∼ πf1(m(x)|µ1,Σ1) + (1−
π)f0(m(x)|µ0,Σ0), where µ0,µ1 are the mean of f0 and
f1, and Σ0,Σ1 are the variance of f0 and f1. π is the
prior probability of P [y = 1]. Thus, (m(x)|y = 0) ∼
f0(m(x)|µ0,Σ0) and (m(x)|y = 1) ∼ f1(m(x)|µ1,Σ1).
Assume the Fisher information of µ0, µ1, Σ0 and Σ1

are bounded, then for all of their unbiased estimators,
we have MSE (µ̂0(i)) ,MSE

(
Σ̂0(j, k)

)
≥ O( 1

n0
) and

MSE (µ̂1(i)) ,MSE
(

Σ̂1(j, k)
)
≥ O( 1

n1
), where MSE is

the mean square error. µ̂0(i) is the i-th element of µ̂, and
Σ̂0(j, k) is the (j, k)-th element of Σ̂0.

While for FedMLH, since the number of buckets B is much
smaller than the number of classes, multiple classes are
merged into the same bucket. Thus, a bucket has much
more positive instances on average compared to the positive
instances in a class. Therefore, by theorem 1, it is much
easier for FedMLH to learn the bucket labels in each sub-
model.

In lemma 1, we further quantify the change of positive
instances. Since when the bucket size B is not very
small, Nlab

B2 is almost negligible compared to the size of
1
B (Nlab−nj). Hence, for any class j, the number of positive
instances in its corresponding bucket increases by around
1
B (Nlab − nj), which is a significant change especially for
infrequent classes. For a example, if a class has Nlab

p pos-
itive instances (equals to the average number of positive
instances owned by a class), using the setup in our “AMZti-
tle” experiment, the corresponding bucket has 32 times more
positive instances in expectation, which will significantly
improves the estimation accuracy of positive sample cluster
according to theorem 1.

Lemma 1 Assume class j is hashed into bucket i in a
hash table. Let nj be the number of positive instances
in class j. Denote Nlab as the total number of positive
instances Nlab =

∑p
j=1 nj . If the labels of different

classes are independent to each other, then the expected
number of positive instances in bucket i is lower bounded
by E (Bi | h(j) = i) ≥ nj + 1

B (Nlab − nj)− Nlab

B2 .

However, the reduction of hash table size also faces some
constrains. A typical constrain is the distinguishability of
different classes. To ensure the classes are distinguishable,
FedMLH uses multiple hash tables, and the size of each
hash table cannot be too small. Lemma 2 gives requirement
to ensure FedMLH is able to distinguish between different
classes with high probability. If the size of the hash table is
too small, there may exist some classes that are hashed into
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(a) (b)

Figure 1. (a) An example of FedMLH with two clients and each client has two different hash tables and predictor networks. In each
hash table, p classes are hashed into B metaclass buckets. (b) FedMLH will merge the output probability for each hash table with
hj , j = 1, 2, 3, 4.

(a) positive instance distribution (b) positive instance proportion distribution (c) Non-iid data partition

Figure 2. Distribution of (a) normalized positive instance frequency and (b) positive instance proportion. For each point (x, y) on the
line, (a) y is the empirical proportion of (normalized positive instance frequency ≤ x); (b) proportion of positive instances contributed
by the classes with normalized positive instance frequency less than x. The distribution of positive instance frequency follows a power
law in all the datasets. But infrequent classes also contribute a lot of positive instances. (c) non-iid data partition for extreme classification
datasets in our setting. Each color represents the training samples associated with one frequent class. This bar plot shows the distribution
of frequent class samples on local clients. Y axis is the client id.

the same bucket in all the hash tables.

Lemma 2 Assume the R hash functions used by FedMLH
are independent to each. Given a R ≥ 1, when B ≥(
p(p−1)

2δ

)1/R
, then with probability 1 − δ, there does not

exist any two classes collide with each other in all the hash
tables.

5.2 FedMLH adjusts the non-iid class distribution

Under the federated learning setup, the class distributions
usually diverge a lot between different clients. In the feder-
ated extreme classification tasks, this problem becomes even
more severe since divergence of class distributions increases
with number of classes in general. However, FedMLH

can relieve this problem in every sub-model. Theorem 2
suggests that the divergence of class distribution strictly
decreases if we hash p classes into less number of buck-
ets. Moreover, as we hash into less buckets, the divergence
monotone decreases in expectation. Therefore, FedMLH is
helpful to adjust the non-iid class distributions and make the
distributions more similar between different local clients.

Theorem 2 Assume for each sample, only one class’s label
is positive. On client k, let n(k)j = be the number of positive

instances of class j. Then, π(k) = (π
(k)
1 , π

(k)
2 , . . . , π

(k)
p )

is the proportion of positive instances of all the classes,

where π
(k)
j =

n
(k)
j∑

j n
(k)
j

is the proportion of positive in-

stances of class j (π
(k)
j > 0). FedMLH hashes the p
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classes into B buckets, and on the k-th client, the propor-
tions of positive instances of different buckets are ω(k) =

(ω
(k)
1 , ω

(k)
2 , . . . , ω

(k)
B ), where

∑B
j=1 ω

(k)
j = 1 and ω(k)

j > 0.
Then, for any two clients a and b, the Kullback–Leibler (KL)
divergence between ω(a) and ω(b) is always smaller than
that between π(a) and π(b).

DKL(ω(a),ω(b)) < DKL(π(a),π(b))

where DKL(π(a),π(b)) =
∑p
i=1 π

(a)
i log

π
(a)
i

π
(b)
i

.

6 EXPERIMENTS AND RESULTS

We perform experiments to evaluate the performance of
FedMLH on four different large scale extreme classifica-
tion datasets, including EURLex-4K (Mencia & Fürnkranz,
2008) (Eurlex), Wiki10-31K (Zubiaga, 2012) (Wiki31), LF-
AmazonTitle-131K (McAuley & Leskovec, 2013) (AMZti-
tle) and LF-WikiSeeAlsoTitles-320K (Bhatia et al., 2016)
(Wikititle). These datasets focus on potentially important
application areas of federated learning with user generated
data (NLP and recommendation system). The details of
the four datasets are listed in Table 1. Since the input fea-
tures are sparse for most the extreme classification datasets,
feature hashing is widely used to reduce the memory cost.
Here, we also use feature hashing to reduce the feature di-
mension (Table 1 shows the hashed feature dimension). For
training both baseline and FedMLH we use the same cluster
of NVIDIA P100 gpus.

Baselines: To evaluate our method, we compare FedMLH
to the FedAvg algorithm. Both algorithm use the same MLP
network (with two hidden layers) for each dataset, besides
the last fully connect layer (FedMLH has less output). For
different datasets, we vary the number of hash tables/sub-
models (R) and number of buckets (B) used in each hash
table (see Table 2).

Non-iid data partition We manually partition the train-
ing samples to ensure the data on different local clients are
non-iid distributed. Since the class distribution is highly
imbalanced and most of the samples have at least one pos-
itive instances among the frequent classes, we try to parti-
tion the samples with frequent classes unevenly and make
sure that the frequent classes on different local workers
are distinct. In detail, for a frequent class j, we collect
the training samples whose label of class j is positive, de-
noted by D(j) (D(j) = {(xi,yi) : yij = 1} where yij
is class j’s label of sample i). Then, we randomly pick
a local client k, and assign D(j) to client k (Figure 2c).
By this approach, different local clients have totally differ-
ent frequent classes samples, thus have non-iid distributed
data(1b). Since most of the samples have multiple labels,
it is possible that D(j) and D(l) have non-empty intersec-

tions (D(j) ∩D(l) = {(xi,yi) : yij = 1 and yil = 1}).
Therefore, samples with more than one positive instances
among frequent class are assigned to multiple clients.

Eurlex Wiki31 AMZtitle Wikititle

d 5, 000 101, 938 40, 000 40, 000

d̃ 300 5, 000 5, 000 10, 000
p 3, 993 30, 938 131, 073 312, 330
N 15, 539 14, 146 294, 805 693, 082

Table 1. The statistics of feature dimension d, feature hashing di-
mension d̃, number of classes p and number of training samples
N .

Eurlex Wiki31 AMZtitle Wikititle

R 4 4 4 8
B 250 1, 000 4, 000 5, 000

Table 2. Number of hash tables/sub-models (R) and buckets (B)
used by FedMLH.

FL setups & training details Our experiment includes
10 local clients, and during synchronization, we randomly
pick 4 local clients to share the model parameters with cen-
tral server. The models are trained for 70 synchronization
rounds, and each synchronization rounds contains 5 epochs.
We also apply early stopping on both baselines to achieve
better accuracy and prevent overfitting. Due to the large
input dimensions, we also perform feature hashing to all the
datasets, and both baselines are run on the feature hashed
data.

Performance metrics Since both baselines multi-label
classification models, traditional accuracy does not apply
here. Instead, we evaluate the prediction accuracy using the
top 1, 3 and 5 accuracy. The top-k accuracy is measured
by the precision of the top k classes with largest predicted
log-probability, which defined as follows:

top k accuracy =

N∑
i=1

|Pk(xi) ∩ Syi
(xi)|

Nk
,

where the Pk(xi) is the set of top k classes with largest
predicted probability of sample i, and Syi

(xi) is the set of
classes whose labels of sample i are positive (yij = 1).

Communication cost Communication cost is another im-
portant concern of FL algorithms. We compare the com-
munication volume of both baselines. The communica-
tion volume is defined as the size of the model parameters
(in bytes) communicated between local clients and central
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Eurlex Wiki31 AMZtitle Wikititle
@1 59.3%(+9.0%) 81.7%(+1.1%) 18.3%(+2.1%) 12.41%(+3.0%)

FedMLH @3 45.6%(+7.3%) 63.4%(+6.5%) 18.7%(+1.3%) 11.89%(+3.0%)
@5 38.4%(+5.1%) 52.1%(+6.3%) 20.4%(+1.1%) 13.01%(+3.4%)
@1 50.3% 80.6% 16.2% 9.43%

FedAvg @3 38.3% 56.9% 17.4% 8.94%
@5 33.3% 45.8% 19.3% 9.59%

Table 3. Top 1, 3 and 5 prediction accuracy of FedMLH and FedAvg.

(a) Total Classes (b) Frequent Classes (c) Infrequent Classes

Figure 3. FedMLH vs FedAvg test accuracy of total classes, frequent classes and infrequent classes of Eurlex dataset in synchronization
rounds. @1, @3, @5 means the precision at top 1, 3 and 5 selected classes

server during the training. Here we measure the communi-
cation volume until the model achieves the best accuracy
(the average of top 1, 3 and 5 accuracy).

6.1 Evaluation Results

We evaluate the performance of FedMLH in terms of the
predicton accuracy, communication cost, model size, con-
vergence rate and training time.

Prediction Accuracy Table 3 suggests that compared to
FedAvg, FedMLH significantly improves prediction accu-
racy in all the experiments. Especially for the EURLex-4K
experiment, the top 1, 3 and 5 accuracy are improved by
9%, 7.3% and 5.1% respectively, which is a significant
boost. Moreover, in the LF-AmazonTitle-131K experiment,
although the absolute accuracy improvement is not as high
as that in the EURLex-4K experiment, considering the low
baseline accuracy of FedAvg algorithm, the relatively ac-
curacy improvements are even more remarkable (relative
accuracy improvement is defined as: absolute accuracy im-
provement/baseline accuracy), which reach 31.8%, 33.6%
and 35.5% for the top 1, 3 and 5 accuracy respectively.

We further evaluate the prediction accuracy of the fre-
quent and infrequent classes. The top-k frequent/infrequent
class accuracy is defined as, # of correctly predicted fre-
quent/infrequent class labels/k (sum of top-k frequent class
accuracy and infrequent class accuracy is the overall top-k
accuracy defined in “Performance metrics”). We find most
of the accuracy improvement comes from the infrequent

class accuracy. In the EURLex-4K experiment, the top-k fre-
quent class accuracy of both baselines are almost the same
(figure 3). But FedMLH significantly outperforms FedAvg
in terms of the infrequent class accuracy. This difference
may be contributed to the adjustment of imbalanced class
distribution accomplished by FedMLH (see section 5.1).

Communication cost During every synchronization
round, FedMLH and FedAvg need to synchronize the model
parameters between the local clients and central server. And
the communication cost is a big bottleneck of FL algorithm.
We compute the communication volume of both baselines,
and table 4 suggests that FedMLH significantly reduces the
communication volume in all the experiments. Especially
for the AMZtitle experiment, to reach the best accuracy,
FedMLH achieves 18.75× reduction of the communication
volume, which will significantly reduce the communication
time.

Model size FedMLH leverages label hashing to reduce
the size of each sub-model by reducing the size of output
layer. Although FedMLH requires multiple sub-models, the
total model size is still reduced compared to that used by
FedAvg. For example, in AMZtitle experiment, FedMLH
reduces the model size from 0.51GB to 0.15GB, which also
lowers the memory requirement of local computing devices.

Convergence rate FedMLH not just decreases the model
size, but also significantly speeds up the convergence rate
in terms of the synchronization rounds (or training epochs).
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(a) Eurlex-4K (b) LF-AmazonTitle131K

(c) Wiki10-31K (d) LF-WikiSeeAlsoTitles-320K

Figure 4. Test accuracy vs total communication volume transmitted by all workers. @1, @3, @5 means the precision at top 1, 3 and 5
selected classes. The vertical gray dash line indicates the place where we early stop the training of FedMLH.

Eurlex Wiki31 AMZtitle Wikititle
FedMLH 199.7Mb 3, 572.8Mb 7.2Gb 53.4Gb
FedAvg 399.2Mb 8, 633.1Mb 135.0Gb 308.7Gb

CC Ratio 1.99× 2.41× 18.75× 5.78×

Table 4. Communication Volume of FedMLH and FedAvg to reach
the best prediction accuracy. CC Ratio: Communication cost ratio
of FedAvg over FedMLH.

For example, in the AMZtitle experiment, FedMLH reduces
the number of synchronization rounds from 66 rounds to
only 12 rounds compared to FedAvg algorithm, which will
significantly reduce the training time.

Local training time Since FedMLH reduces the model
size, it is also beneficial to reduce the local training time.
Table 7 measures the time to train a local synchronization
round (5 epochs on a local client). Compared to FedAvg,
FedMLH also has shorter local training time in all the ex-
periments.

Eurlex Wiki31 AMZtitle Wikititle
FedMLH 1.61MB 49.62MB 0.15GB 0.48GB
FedAvg 2.56MB 69.62MB 0.51GB 1.21GB

Memory Ratio 1.59× 1.40× 3.40× 2.52×

Table 5. Model memory usage of FedMLH and FedAvg in each
client. Memory Ratio is the memory cost ratio of FedAvg over
FedMLH.

6.2 Hyper-parameter Tuning

FedMLH includes two hyper-parameters, hash table size
B and R before running the experiments. A larger B or R
leads to higher prediction accuracy. However, due to the
memory constrain, we have to restrict the size of B and
R. In this section, we test the performance of FedMLH
under different B and R. First, we compare the sensitivity
of FedMLH to the size of hash table size. Figure 5a and
5c suggest that the accuracy of FedMLH almost keeps the
same when the number of hash tables doubles from 4 to 8.
Hence, keep increasing the number of hash tables may not
be helpful. From the memory perspective, a smaller R is
preferred. We also evaluated the effect of hash table size.
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(a) Eurlex-4K: sensitivity to hash table size (b) Eurlex-4K: sensitivity to number of hash tables

(c) Wiki10-31K: sensitivity to hash table size (d) Wiki10-31K: sensitivity to number of hash tables

Figure 5. Test accuracy of FedMLH under different setups of hyper-parameters. @1, @3, @5 means the precision at top 1, 3 and 5
selected classes.

Eurlex Wiki31 AMZtitle Wikititle
FedMLH 31 18 12 28
FedAvg 39 31 66 64

Rounds Ratio 1.25× 1.72× 5.5× 2.29×

Table 6. Number of synchronization rounds to reach optimal ac-
curacy of FedMLH and FedAvg. Rounds ratio is the number of
synchronization rounds of FedAvg over FedMLH.

Again, FedMLH is robust to the changes of hash table size.
For the Wiki10-31K dataset, a larger hash table size could
boost the top 3 and 5 accuracy by 5%. However, compared
to FedAvg, FedMLH still significantly outperforms FedAvg
even when we reduces the hash table size from 1, 000 (in
the previous experiment) to 500.

7 RELATED WORKS

Federated Learning in non-iid data Federated learning
has significant degraded performance in non iid datasets,
first empirically observed by (Zhao et al., 2018). In (Karim-
ireddy et al., 2020), FedAvg is shown to suffer from so
called client-drift. Several analysis of FedAvg bound this

Eurlex Wiki31 AMZtitle Wikititle
FedMLH 4.67s 5.44s 5.97s 5.82s
FedAvg 5.38s 5.73s 6.21s 7.26s

Time Ratio 1.15× 1.05× 1.04× 1.24×

Table 7. Wall clock time of FedML and FedAvg of each synchro-
nization round. Time ratio: computation time of each synchroniza-
tion round of FedAvg over FedMLH.

drift by assuming bounded gradients (Wang et al., 2019; Yu
et al., 2019) while some view it as additional noise (Khaled
et al., 2020). Some work proposes solutions to such prob-
lem such as using variance reduction (Liang et al., 2019), or
adding regularization to the local worker training (Li et al.,
2018). But none of the above considered federated learning
on extreme classification with imbalanced and they do not
provide convergence speedup at the same time of reaching
higher accuracy.

Extreme classification As many important real life tasks
can be modeled as the extreme classification, it becomes
one of the most important area of research. Several papers
explore the extreme classification in centralized training
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scenario (Choromanska & Langford, 2014; Prabhu et al.,
2018; Hsu et al., 2009; Medini et al., 2019). But FedMLH
is the first to explore and analyze extreme classification in
highly imbalanced and non iid data distribution in federated
learning.

8 CONCLUSION

In this project, we propose FedMLH for efficient feder-
ated extreme classification tasks. We demonstrate that our
algorithm significantly reduces the communication cost, im-
proves the classification accuracy and speeds up the training
time, especially on the large scale extreme classification
datasets. We envision that FedMLH will be widely imple-
mented in different fields like the recommendation system.
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