A Programmable, Hardware-Assisted Network Protocol Fuzzer

Yuxin Tang

Ang Chen

Rice University

Fuzzing is an important approach to software testing,
particularly when the source code is not available. At
a high level, a fuzzer generates random inputs to the pro-
gram under test, and identifies the (sequences of) inputs
that trigger faulty behaviors, such as a program crash.
In the context of networking software, a network pro-
tocol fuzzer produces sequences of packets based on a
protocol specification as test cases. Since many network
protocols are stateful, the fuzzer also needs to closely fol-
low specified state transitions when deciding on the next
packets to send [3]. One important metric for a fuzzing
test is time to first fault (TTFF) [1], which quantifies the
performance and effectiveness of a fuzzer by measuring
the time it takes to trigger the first fault in the tested soft-
ware. Since modern software tends to be large and com-
plex, fuzzers with higher performance can cover more
test cases and provide higher assurance.

Qur system: p4£. We describe p4 £, a programmable,
high-performance network protocol fuzzer. What sets
p4f apart from existing fuzzing tools is its ability to
a) accept high-level protocol specifications in a declara-
tive language, and b) automatically synthesize fuzzer im-
plementations that are targeted to run directly on switch
hardware. The p4f system leverages a recent trend
in the networking community that has developed pro-
grammable data planes on modern switches. Devices
such as Intel FlexPipe and Barefoot Tofino are inte-
grated with a reconfigurable match/action architecture
that enables custom definition of network protocols, pro-
grammable parsers, and linespeed on-chip packet gen-
eration. The initial motivation behind this line of work
is the quest for more network programmability both in
the control plane (as found in software-defined networks)
and also in the data plane (which used to be fixed-
function blackboxes). Our key observation is that such
new capabilities on programmable data planes match
nicely with the design requirements for a network pro-
tocol fuzzer—namely, the ability to generate packets for
custom protocols at high speed.

Specifying network protocols. Users of p4 £ can spec-
ify network protocols in a high-level language, analo-
gous to using a data format parser [2]. This declara-
tive interface relieves users from the burden of reason-
ing about low-level implementations of the fuzzer, and
allows fast prototyping of new protocol fuzzers by re-
defining the specification. Our language has two basic
constructs: packets and sequences. A packet simply de-

Yuxin Tang: Student author

scribes the data format of a particular type of packets in a
protocol (e.g., HTTP GET). The fuzzer can generate a se-
quence of packets by randomly mutating certain protocol
fields, by following state transitions, or both. Consider
the following example, which defines an HTTP GET re-
quest for http 1.1, with random strings as the URI
and random data as payload; string lengths and data sizes
can be further parameterized.

http-get = ipltcplopluri|ver|crlf|pload
op = "GET"

uri = rand[10]

ver = "HTTP/1.1"

crlf = "\r\n"

pload = rand[100]

Based on this, a fuzzer could further define a se-
quence (http-get)* to generate k random HTTP
GET requests, or a sequence (http-post)’ to
generate t HTTP POST requests, or an interleav-
ing sequence of GET and POST requests using
(http—-get |http-post) *.

Compilation strategies. Our compiler takes a protocol
specification, and generates a protocol fuzzer written in
P4, which is a language for programmable data planes. A
packet in the specification is directly compiled as header
and parser definitions, and packet assembly pipelines. A
sequence is compiled by instantiating read/write registers
to keep track of the protocol progress, and by protocol
mutations using pre-coded randomness.

Initial validation. Our current p4 £ prototype is hand-
written in P4 for a subset of the HTTP protocol. It runs
in an emulated environment in Mininet, and generates
test packets to emulated network servers. Our initial
results show that the current prototype can generate 19
packets per second as an HTTP fuzzer. We note, how-
ever, that this experiment is meant as a feasibility study
rather than performance benchmarks, because the final
p4f system would run directly on switch hardware. As
ongoing work, we are building a fully functional com-
piler that can generate P4-based fuzzers based on user-
defined specifications.

References

[1] State of Fuzzing. https://www.synopsys.com/
content/dam/synopsys/sig-assets/reports/
state-of-fuzzing-2017.pdf

[2] J.Bangert and N. Zeldovich. Nail: A practical tool for parsing and
generating data formats. In Proc. OSDI, 2014.

[3] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer,
and G. Vigna. SNOOZE: Toward a stateful network protocol
fuzzer. In Proc. ISC, 2006.

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf

